
Introduction to Reason(ML)
Arnoldas Šidlauskas

What is it?

Reason
A new language by Facebook

Based on OCaml

Reason was open sourced a year ago and started ~2 years ago

Lead by Jordan Walke (creator of React)

Syntax heavily inspired by modern JavaScript, Rust

OCaml
Statically typed functional language (ML family)

Pragmatic approach

Created around the same time as JS

Compilation to multiple backends

Used by Jane Street, Facebook

The reason behind Reason
Facebook had a lot of success using OCaml

A lot of complaints about syntax

Good fit for web development, but lack of tools/libraries

The language

Syntax

Static typing
Once it compiles it runs

Helps prevent bugs

Great type inference

First class immutable data structures
Makes code easier to reason about

Works well with modern front end frameworks

Makes some things much easier to implement

Will not be coming in JS in the nearby future

Automatic currying of functions
Helps a lot in function composition

Labeled parameters
Can make code easier to read/learn (http://worrydream.com/LearnableProgramming/)

Can prevent some bugs

Allows currying in any order

Good fit for UI development

We are used to work

around it via various

conventions

http://worrydream.com/LearnableProgramming/

Except when this happens

Module system
Added to JS in ES2015 (aka ES6)

Still not supported by any browser yet

OCaml has a module system that is much more powerful than the JavaScript one

JS Compilation

BuckleScript
Made by Bloomberg

Produces readable code

Really fast compilation time

Aggressively eliminates dead code

Can be used with Google Closure compiler / RollupJS

Reached 1.0 less than a year ago

BuckleScript benchmarks
(https://github.com/bloomberg/bucklescript#immutable-data-structures)

Execution Time:

● BuckleScript: 1186ms

● JavaScript with Immutable.js: 3415ms

Compiled Size:

● BuckleScript (production): 899 Bytes

● JavaScript with Immutable.js: 55.3K Bytes

https://github.com/bloomberg/bucklescript#immutable-data-structures

BuckleScript benchmarks
Timings:

Reason: using BuckleScript Records/Lists :

710.390ms

JS: using Object.assign 8263.039ms

Timings of unfair/cheating variants

JS: using Object and manual key mapping (brittle

code!) : 3123.591ms

JS: using Object mutation (no immutability!)

: 1721.166ms

https://github.com/neonsquare/bucklescript-bench

mark

https://github.com/neonsquare/bucklescript-benchmark
https://github.com/neonsquare/bucklescript-benchmark
https://github.com/neonsquare/bucklescript-benchmark

The reason behind this

Record

Tuple

Option

List

http://bloomberg.github.io/bucklescript/Manual.html#_runtime_representation

JS -> Reason conversion
/* original JS file you've copied
over */
const school = require('school');

const defaultId = 10;

function queryResult(usePayload,
payload) {
 if (usePayload) {
 return payload.student
 }
 return
school.getStudentById(defaultId);
}

/* in a dedicated School.re file */
type student;
external getStudentById: int => student = "getStudentById"
[@@bs.module "School"];
external getAllStudents: unit => array student = "getAllStudents"
[@@bs.module "School"];

/* in the current file */
type payloadType = Js.t {. student: School.student}; /* TODO: put this
somewhere else! */

let defaultId = 10;

let queryResult usePayload (payload: payloadType) => {
 if (Js.to_bool usePayload) {
 payload##student
 } else {
 School.getStudentById defaultId;
 }
};

JS -> Reason react conversion with interop

There is much more
Good error messages

Sandboxed environments

Refmt

MirageOS Unikernels

Conclusion
Type checking really helps

A lot of awesome features

BuckleScript is fast

Good interoperability with existing JS

Easy to get started, however lots of features = lots to learn

Still a bleeding edge technology, quite a few rough edges

Thank you for your attention
https://facebook.github.io/reason/

