
Service Worker
“Man-in-the-middle API for your web apps”



- Nah, Service Workers are not intended to hurt you

- Opposite of that, they are intended to provide you, as a user, with some decent experience once your internet connections goes haywire



!👷

#$
- Nah, those are not service workers.

- Those are just consumers that after long day of working sometimes expects your web application to be functioning properly.



Go from shitty experience such as this



- To having offline experience like this

- Where content is still available

- There is an actual working example where I added small service worker to Vilnius.js website code to cache some of the resources, so you can still visit the website as if 
it was some app once you go offline





“Script that acts as proxy server 
that sits between your web app, 

browser and the network.” 

- The definition of service workers, sometimes they are confused with Web Workers

- “Web Workers are a mechanism by which a script operation can be made to run in a background thread separate from the main execution thread of a web application.”



Provide user with

•Consistent performance

•Native like experience

•Reduced data usage

- Reliable performance that is consistently fast (Repeat visits are extremely quick. Static assets and the UI (e.g. HTML, JavaScript, images and CSS) are cached on the 
first visit so that they load instantly on repeat visits. Content may be cached on the first visit, but is typically loaded when it is needed.)


- Native-like interactions (By adopting the app shell model, you can create experiences with instant, native-application-like navigation and interactions, complete with 
offline support.)


- Economical use of data (Design for minimal data usage and be judicious in what you cache because listing files that are non-essential (large images that are not shown 
on every page, for instance) result in browsers downloading more data than is strictly necessary. Even though data is relatively cheap in western countries, this is not the 
case in emerging markets where connectivity is expensive and data is costly.)



Lifecycle



Stages

1. Download
2. Install
3. Activate



Installing



Updating



Internals



•No DOM access

•Can run without page

•Terminates and runs itself

•HTTPS only

- Browser spins yet another instance of JS engine in order to execute your scripts, so all the execution happens in another thread

- Works for localhost on http, in order to do some testing without going through the clutter of setting up SSL



Scopes



Related APIs

- Service Workers left alone is not that much of a useful thing

- It relies on many other APIs such as the following

- NEXT SLIDE: DEPENDENT APIs



Promise
Fetch
Broadcast Channel
Cache
IndexDB

- More on Cache: https://developer.mozilla.org/en-US/docs/Web/API/Cache

PROVIDE BRIEF INTRO TO MOST OF THEM

EVEN THOUGH IT’S NOT ENTIRELY NECESSARY TO HAVE A GRASP OF ANYTHING ELSE THAN Promises and Fetch API



Promises

• Value which may be available now in the 
future or never 





Fetch API
• Replaces XMLHttpRequest

• Uses Promises

• Generic definitions for:

• Request/Response

• Headers

Fetch provides a generic definition of Request and Response objects (and other things involved with network requests). This will allow them to be used wherever they are 
needed in the future, whether it’s for service workers, Cache API and other similar things that handle or modify requests and responses, or any kind of use case that 
might require you to generate your own responses programmatically.




Broadcast Channel



Cache



IndexDB



Code Example

- Show very basic code example

- Registered, working, caching, working offline



Browser Support

- So yeah, Apple are being an asshole, because why not





References

• Udacity - Intro to Progressive Web Apps

• MDN - Service Workers

• Web Fundamentals - Service Workers

• Offline First

- All of these are keywords for one to put into Google or some other Search Engine of choice


