
Move over, Gatsby

React Static in Practice



Hello �
I'm Nikas

nikas.praninskas.com

github.com/nikaspran

@nikaspran

Tech Lead @ Hostmaker



Hostmaker.com - 6 months ago

● Slow-ish
● Legacy stack

○ Slow builds (20+ min)
○ Difficult deployment

● Needed a brand refresh

It was time for a rewrite



Challenges (1)

● Tons of unique content
○ 9 cities + 6 country hubs
○ 2+ languages each
○ 15+ "templates"

● Dynamically generated content
○ PhraseApp
○ Cosmic JS
○ Greenhouse
○ Our own API
○ ...

1500+ unique pages



Challenges (2)

● Search Engine Optimisation
● Page Speed

○ Don't want to be fetching all that dynamic content on every load

● Avoid the big switch-over
○ Tight deadlines
○ Difficult sell



We were looking for something...

⬚ React based
○ Just like all of our other products

⬚ Flexible
○ Had to integrate with our existing codebase
○ Had to support iterative migration

⬚ Simple
○ We were finishing our migration to React
○ Did not want new tools (i.e. GraphQL) to be a barrier

⬚ Long term
○ Simplicity === we can change fetching strategies, add caching, etc.



Why not use a static site generator?



Static Site Generators





"Next.js is a lightweight framework for static and 
server‑rendered applications."

● Originally for Isomorphic 
JavaScript Apps

● `next export` - prebuilt apps
● Hey, we're already using this!



● Great framework
● Well documented
● Large community

● Great framework - Next.js more than React
● Predefined structure
● Slow and difficult to optimise

But...



We were looking for something...

✓⬚ React based
○ Just like all of our other products

⬚ Flexible
○ Had to integrate with our existing codebase
○ Had to support iterative migration

⬚ Simple
○ We were finishing our migration to React
○ Did not want new tools (i.e. GraphQL) to be a barrier

⬚ Long term
○ Simplicity === we can change fetching strategies, add caching, etc.





"Gatsby is a blazing fast modern site generator for React."

● The de facto static site generator for React



● Well documented
● Large community
● Fast & Powerful

● GraphQL everywhere
● Plugins for everything
● Need to write a plugin to use custom sources

But...



We were looking for something...

✓
✓

✓

⬚ React based
○ Just like all of our other products

⬚ Flexible
○ Had to integrate with our existing codebase
○ Had to support iterative migration

⬚ Simple
○ We were finishing our migration to React
○ Did not want new tools (i.e. GraphQL) to be a barrier

⬚ Long term
○ Simplicity === we can change fetching strategies, add caching, etc.



Static Site Generators - two clear options



Static Site Generators - React Static

Why are we talking about this then?



"React-Static is a fast, lightweight, and powerful framework 
for building static-progressive React applications and 
websites."

● The promise of the power of Gatsby without the complexity
● It's just React



Gatsby - "Programatically create pages from data"

http://www.youtube.com/watch?v=CUTcj6WtGio


React Static - just like, getRoutes(), lol



How it works - 2 main concepts

/src

App.js

package.json

static.config.js

index.js

/components



How it works - static.config.js (1)

Routes

● static.config.js
● App.js



How it works - static.config.js (2)

Generate a 
route for 

each locale

● static.config.js
● App.js



App.js

static.config.js



How it works - App.js

Dynamic 
routes 
(Signup) 

React-static 
routes

● static.config.js
● App.js



We were looking for something...

✓
✓

✓

✓

⬚ React based
○ Just like all of our other products

⬚ Flexible
○ Had to integrate with our existing codebase
○ Had to support iterative migration

⬚ Simple
○ We were finishing our migration to React
○ Did not want new tools (i.e. GraphQL) to be a barrier

⬚ Long term
○ Simplicity === we can change fetching strategies, add caching, etc.



The drawback

A little scary





What went well



What went well - Very customisable

● Integrated pretty well with our existing codebase
● Tailored to our needs:

○ CSS modules
○ Imgix
○ Translations and localized content
○ Custom webpack config



What went well - Great development experience

● Hot reloading
● Detailed logging when something goes wrong



What went well - Great performance

● Pretty great out of the box
● Gives us a lot of options long term

○ Code splitting
○ Dynamic loading



What went well - Did everything it had to

● Started with 500 pre-built pages, now up to 1500+
● Loading data from 12+ endpoints at build time
● Around 3 minute build time
● Can scale long term



What did not go well



What did not go well - Documentation

● Covers everything, but we often had to read the source
● On the bright side, the source is easy to understand



What did not go well - Client/Server is still a thing

● Even though there's no "server", there's still a build 
step run via Node

● Can't always use the obvious solution



Main Takeaway Stay in 
React-land



Main Takeaway - getLocale()

● Need to get the current locale (city, language) for 
rendering data

● Used everywhere
● One of the most important parts of “plumbing”



● Works great in dev and for regular users
● Does not work when pre-building

● The bug is hidden at dev time
○ All pre-built files use the default fallback
○ Gets the correct value during runtime

Main Takeaway - standard approach

localeService.getLocale()



Main Takeaway - possible solution?

● Need some data globally
● Need to be able to instantiate via props

why not use React Context?



Main Takeaway - the React-land approach (1)

A context 
provider

From getRoutes()



Main Takeaway - the React-land approach (2)

HoC wrapper

Injected 
via props



React-land everywhere

● No more mismatches between build and runtime
● We've since started using providers and context in other 

projects too



A Different Kind of Context



JAMstack

"Modern web development architecture based on client-side 
JavaScript, reusable APIs, and prebuilt Markup."

JS

API

.html

build .css

.js

Markup

- jamstack.org



JAMstack Benefits

● Easy deployment
○ Just upload everything to a CDN (i.e. AWS S3)

● Blazing fast
○ Scaling -> just "add more CDN"
○ No waiting for content, no loading screens

● Great dev experience
○ Can't beat free - Github Pages, Netlify etc..
○ Reproducible builds -> easy debugging



We are not alone

"SmashingMagazine.com is now much faster, 
they went from 800 ms time to first load to 
80ms."
- www.netlify.com/case-studies/smashing/



In summary
● Mostly
● Would we do it again?



In summary
● Mostly
● Would we do it again?

Yes!



nikas.praninskas.com

github.com/nikaspran

@nikaspran

Let's keep in touch:

Thank you!
Live Demo @

hostmaker.com/careers


