A https://www.beautiful.ai/presenter

WebAssembly

WebAssembly (a.k.a. wasm) an efficient, low-level bytecode for the web.

Oded Soffrin Noam Neeman
FED @ Wix Photographers FED @ Wix Answers

11:44:43 AM 1/50 00:00:36

WebAssembly

-introduce
ourselves. talk
about web
assembly and
why we will still

have jobs as s

A https://www.beautiful.ai/presenter

It doesn't make a lot of sense to

Our agenda for today speak about WebAssembly
without going through the

_ history of JS. so first we'll run
| The cost of JavaScript

through the fundamentals of

History of WebAssembly : i
JS engines, then will go over

i WHagisWenAssemB yF some of the history that made
| What is it good for? the riverbed that led to the

Demos creation of webAssembly. then

we'll then we'll dive into web
Looking to the future

assembly itself, following with

some exciting live demo's and

11:45:22 AM | wearal finally a look to the future.

WebAssembly The cost l;'-lll'l.!-liﬂ'ill't

@ https://www.beautiful.ai/presenter

No notes

Section 1

The cost of JavaScript

11:45:33 AM 3/50 00:00:00

WebAssembly The cost of JavaScript

A https://www.beautiful.ai/presenter

11:45:54 AM

00:00:15

There's an article on
medium called "the

cost of js" by a Google
Chrome Eng - Addy
Osmani. Must Read.

some of the slides
that follow are exerts
from his article

A https://www.beautiful.ai/presenter

11:46:03 AM

First request

The cost n“f-.:liuni-:ript

Fetch resources

Decompress, Parse/Compile, Render

00:00:04

_et's start from the very

basics This is an outline of
how we get our apps running
in the browser When most
developers think about the
cost of JavaScript, they think
about it in terms of the
download & execution cost.
We do all these tricks to

minimise the packages that

are sent.

A https://www.beautiful.ai/presenter

We do all these and more, to

reduce bundle size and

Minify _everything_ Transpile less code

Babelified ES5 w/Uglify |NEMEEN Dabel-preset-eny +modules:false transfer time. -Code-splitting
ES2015+ with babel-minify Browserlist
css-loader + minimize:true useBuiltins: true

- only ship needed code -

-splitti m Scope Hoisting: . :
Code-splitting o m
Dynamic import() Webpack 3 M|n|fy Re DV|ng UnUSEd
Route-based chunking RollUp

code -Caching - minimise

Tree-shaking Strip unused Lodash modules

Webpack 2+ with Uglify | lodash-webpack-plugin network trips what's usually
RollUp babel-plugin-lodash

DCE w/ Closure Compiler | goes u nthOught Of and

e T i Fewer Moment.js locales A
Opt Vend lib J
NEE;EIEIr\?Vzp?Ed;{:rtm; o o= ContextReplacementPlugin() forgOtten! parse and Complle

CommonsChunk + HashedMaduleldsFluging) . l

time have you ever looked at
this?

11:46:14 AM 6/50 00:00:02

A https://www.beautiful.ai/presenter

Flame Chart Bottom-Up Call Tree Event Log

Filter

Self Time
3546.9 ms

971.2 ms 12
-'"’.9 /

596.7 ms

11:46:23 AM

" Al

Group by Activity

Total Time

3546.9 ms 4
1600.5 ms :
605.5ms 8.0 9

v

Activity
R4 JavaScript
Compile

Parse

00:00:00

BTW You can see these stats
under Bottom-Up in the
performance tab in chrome dev
tools. Parsing the time it takes to
process the source code into
something that the interpreter
can run. AST - Abstract Syntax
Tree Compiling - the time that is

spent in the compiler. Some of

the "optimizing compiler™’s
work is not on the main thread,
so itis not included here.

A https://www.beautiful.ai/presenter

just to recap, these
are the steps we take
garbage pa Se Optim|2ing Re—

arse _opti
s L e collection

/ / rd F
.".. r'r /
Jr - b W
I =
— |
-l'* S ""i.:
.'.\\". ..\..'\.\.M-

compile + optimize execute

optimizing Execution

Garbage collection

all of this happens
after the resource

how start-up performance of an application might look like today.

has been
00:00:00 d OoOwn load ed .

11:46:28 AM < 850

D
|eript P Do D ko - C8 M
e :
'_..........
—— =

A https://www.beautiful.ai/presenter

just for
JavaScript Parse Cost On Mobile - CNN com pa rison, on
mobile: CNN.com

takes ~4s to parse

on an iPhone 8

' " | and up to 13son a
Moto G4.

11:46:32 AM 00:00:00

A https://www.beautiful.ai/presenter

Now that we know that the
cost of parsing is high, we
can go on to the next step,
compiling time, but wait,

compiling? should javascript

A crash course in just-in-time (JIT) compilers

be interpreted? who here
Q By Lin Clark
. Posted on February 28, 2017 in A cartoon intro to WebAssembly, JavaScript, Performance, and WebAssembly W 5Share This « eve r h ea rd Of J IT? great
article by Lin clark, some of
the slides including graphics
are exerts from her series of

articles about web

11:46:36 AM 00:00:00 assembIY'

A https://www.beautiful.ai/presenter

now that we have parsed code (AST) we need to runiit,

but machines only understand machine language,
I nterp reter VS CO m pi ler in%tfuctinns which can actually run r::.rn the.pmcesanr

originally there were two ways of doing this. An
interpreter does this line by line, going over every line
of code (AST) every time it's hit. and compiles it on the
fly to a machine instructions. on the other hand
1;1010101001010 for (i = 0: i < len i+4) compiler takes all the code in at once and spits out the
T executable code. can take its time doing so for various
verifications and optimisations. the compiler compiles

code for a specific hardware architecture. and the code

will only run on that specific architecture. seems like

it's obvious why initially interpreters seemed like a

really good fit for the web. code could transfer over the

network then up and running fairly quick, no matter

what hardware was on the client end. Up to 2008,
browsers actually used a plain old interpreter to run
JS. the big disadvantage was brought to light as
heavier and heavier apps were ran. a new technology

Interpreter Compiler

was needed to solve this. in came JIT compiler - just in
time

11:46:40 AM /50 00:00:00

Brgwesar wars! Just-is-time campilers Just-is-time campilers

A crash cowrse in just-in-time [JIT) compilers

m https://www.beautiful.ai/presente

Browser wars!

11:46:44 AM

as of 2008, fuelled
by browser wars.
Browser companies
looked for various
ways to make their
browsers fast. that

meant running site

code faster.

00:00:00

A https://www.beautiful.ai/presenter

Just-in-time compilers

11:46:54 AM

First Run

00:00:05

that's when JIT compilers were first
introduced in the browsers JS
engines. JIT was not a new concept,
it dates back to 1970's over LISP.
Every browser did it differently. but
the underlying concept is the same.
JIT uses the same interpreter as
before mentioned but add a crucial
component the PROFILER or
MONITOR. the monitor surveys the
execution frequency of each line
that runs. the first time around,

running normal interpreter.

A https://www.beautiful.ai/presenter

Just-in-time compilers

11:46:59 AM

Baseline compiler

00:00:00

when the same line runs again
and again, the monitor marks it
as warm. and has it sent to the
baseline compiler, then it saves
a reference to the compiled code
so whenever the line is hit again
it just pulls the compiled
version. it is worth to note again,
compilation takes valuable
processor time. but if a line runs
over and over again, it might be
worth it.

A https://www.beautiful.ai/presenter

Just-in-time compilers

11:47:04 AM

sum += arr[i]

sum an int? I

"

arr an array?

i an int?

arr[i] an int?

Baseline compiler

00:00:00

Just-in-time cormpilers

Just-is-time campilers Just-is-time campi lers Just-is-time campilers

BUT, we're in JS, and that one line of
code could mean different things for
different variable types. string addition
is a very different processor instruction
than integer or floating point addition.
in the example, if even one of the
array's values has a different type then
we need a compiled version to account
forit. the baseline compiler is very
much aware of this and creates
different compiled versions for
different inputs. but this means that
before execution of the compiled code
it still needs to ask itself what is the
shape of the variables. in a loop this
can be very expensive.

Just-is-time campilers Just-is-time campilers - 10w faster!

A https://www.beautiful.ai/presenter

Just-in-time compilers

11:47:10 AM

sum += arrli|

00:00:02

Then at runtime
the profiler makes

all these type

assertions to
choose the correct
path to take. that's
expensive!

m https://www.beautiful.ai/presente

Just-in-time compilers

11:47:16 AM

sum += arrli|

00:00:00

one optimisation we
could do for this loop
for example is move
some of these
assertions outside of
the array. that's
exactly where the

optimising compiler

comes In.

m https://www.beautiful.ai/presente

when a warm piece of code really runs and

. . : marked as hot it's really worth it to make all
Just-in-time compilers - 10x faster! these optimisations ASSUMPTIONS OVER
THE CODE! to provide with a very fast set of
instructions that only run under those
assumptions this optimisation step takes a
long time so obviously it doesn't scale for
every line of code. butifalineruns a lot

then it's worth it. one caveat. if the

assumptions turn out to be false, then we
BAIL OUT. if they are right then we end up
running code that's a lot faster than regular

interpreter code. overall JIT compiler run
approx 10x faster than reg. off course, this is

Optimizing compiler L .
nnly one c:-ptlm|5at|nn step

11:47:20 AM 00:00:00

[Just-in-time cornpilers - 10x faster
Just-isrtime campilers Just-is-time campllers

i‘-

. —
L i e

.rl s Wil ?

¥
I

@ https://www.beautiful.ai/presenter

developed by mozila First appeared
21 March 2013; 5 years ago[1] asm.js
Is a subset of JavaScript designed to
allow computer software written in
languages such as C to be run as web

Section 2 applications while maintaining

HiSto ry Of webAssembly performance characteristics

o considerably better than standard
JavaScript. the main idea is to use a
version of JS thats strict enough to
allow for easier compiler
optimisations and fewer to no
bailouts. one example of this is

elimination of dynamic types.

11:47:24 AM 00:00:00

History of H;hﬁssemhly
A

m https://www.beautiful.ai/presente

remember how hard it was for the
optimising compiler to pick hot

Asm.js, a strict subset of JavaScript

lines? By using the bitwise operator
we convert the value of the first
variable to a 32-bit integer. This
ensures that second is always
treated as a 32-bit integer. asm.js
has a number of other similar rules.
By combining these rules with
normal JavaScript, much faster
code can be created skipping a lot
— of optimisation steps . no one wants

to write, let alone maintain code
like this.

11:47:28 AM < 2050 > 00:00:00

History of WebAssembly
e

m https://www.beautiful.ai/presente

Asm.js, ¢/c++ code to JS

11:47:32 AM

JavaScript

00:00:00

llvm - compiler infra. empscripten
- takes llvm bitcode to js. it is not
a good idea to write asm.js code
by hand. The result would be
hard to maintain and time
consuming to debug. The good
news is that a few tools exist for
generating JavaScript code
according to the asm.js
specification from other
languages like C or C++.
EMSCRIPTEN is one of them, a
mozila project.

m https://www.beautiful.ai/presente

checking against emscripten
Asm.js, faster than regular JS compiled version of ¢ code for
Fibonacci sequence against
regular js. you see around 25%
faster. still slower than native
code. in 2013, ported Unreal
Engine 3 ported to Asm.js in
four days - enabled for the first
time. it's so straight forward to
J::agf::lrii';t - port these codebases to asm.js
Fibonacci sequence calculations that some time ago we had

this! show this:

11:47:36 AM el https://win95.ajf.me/win95.html)

of WebAssembly

i

@ https://www.beautiful.ai/presenter

Finally, after going through

the history of how JS runs
In our browser, and the
uprising of asm.js trying to
Section 3 - (finally) get code run even faster.

WebAssembly we move on to the next
iteration. |'de like to invide
Oded Sofrin of Wix
Photographers to tell us
more.

11:47:40 AM < 1350 > 00:00:00

fecrhian 1§ - | Mnally |

WebAssembly

m https://www.beautiful.ai/presente

WebAssembly.org

WebAssembly Working Group.

11:47:44 AM

WEBASSEMBLY

geve

[WebAzzembly.org

WEBASSEMBLY

e've

00:00:00

Since 2015 Working Group: Google
Mozlla, apple, facebook, intel, |g,
microsoft No more optimzing and
adding layers to that interpreter
from 95, but starting from scratch
an idea that fits the current usage of
prowsers 2017 - WASM MVP WASM is
binary instruction format for stack-

based virtual machine portable
target for compilation of languages
like C/C++/Rust (and many more to
come) enable deployment on the
web for client/server apps

@ https://www.beautiful.ai/presenter

it is a stack based
binary instruction that
the browser can run in
near native
performance. efficency
g - binary size & decode /
compilation wise
compiled target
(nobody wants to write

11:47:49 AM ¢ 250) sspe like th at)

s

What is it good for?

m https://www.beautiful.ai/presente

Compile Directly

11:47:53 AM 00:00:00

Webkssembly. org

WEBASSEMELY

fe'w

compiling directly: compile corresponds to a
particular machine architecture (windows /
mac / android...) INTERMIDIATE
REPRESENTATION When you’re delivering
code to be executed on the user’s machine
across the web, you don’t know what your
target architecture the code will be running
on. You might think WebAssembly as just
another one of the target assembly
languages. WebAssembly is a little bit
different than other kinds of assembly. It’s a
machine language for a conceptual machine,
not an actual, physical machine. It is not
primarily intended to be written by hand,
rather it is designed to be an effective
compilation target for low-level source
languages like C, C++, Rust, etc.

i

What is it good for?

m https://www.beautiful.ai/presente

Because of this, WebAssembly
instructions are sometimes called

WebAssembly - Compile Target

virtual instructions. They have a much
more direct mapping to machine code
than JavaScript source code. but they
are not assembly. They represent a sort
of intersection of what can be done

C
\ I efficiently across common popular

C+t ————3 |[R —a wasm]
Ny hardware. But they aren’t direct

Rust / mappings to the particular machine
code of one specific hardware. The

browser downloads the WebAssembly.
Then, it can make the short hop from
WebAssembly to that target machine’s

assembly code.

11:47:58 AM i 00:00:01

aewis

What is it good for?

@ https://www.beautiful.ai/presenter

No notes

Section 4

What is it good for?

11:48:02 AM < 28/50 > 00:00:00

Compile Directly Webhzsembly - Doegile Taged 15 Timedine [reminder) WasH Timekne

B pr—

What is it good for? o T

Stk 4

Il

_:'ﬂnui

m https://www.beautiful.ai/presente

No notes

Why Should we use it?

1 Speed

2 Portability

3 Flexibility

11:48:06 AM 00:00:00

Why Should we wse i1?
Webkssembly - Compile Target {) = 12 Fartabiliy

el

What is it good for?

m https://www.beautiful.ai/presente

Speed Even in the optimal
JS Timeline (reminder) mode, when we start

PARSING as the packets

comes in, on a different

,/mmpile execute
11 _-_._|___’}_ thread.. we can only start
—
— ——————

packets coming in

MAIN THREAD

executing when we done

parsing, on the main

thread, interrupted by
optimization & re-
optizimations

11:48:11 AM 30/50 00:00:01

enisn

What is it good for?

m https://www.beautiful.ai/presente

WASM Timeline

MAIN THREAD

11:48:15 AM

i

is it good for?

execution

#
L1111 e —

" “ "—f(‘ hot-swapping

E

m

Kmptimizing
compile

WASM Tirmeline
12 Fortability

M

—
i ———
111 —

00:00:00

Decode as oppose to parsing Compiling is much faster -
A lot of the optimzation were already done in the
transition to wasm - written in ideal language for
machines - types are well defined, so one compilation
fits all Different browsers handle compiling
WebAssembly differently. Some browsers do a baseline
compilation of WebAssembly before starting to execute
it, and others use a JIT. In current FF - packets are being
decoded & compiled (baseline) as packets come in,
meaning it's takes not much longer than downloading,
and start executing right away meanwhile on different
multi-threads, optimization is being perform and hot-
swapping on the main thread when done Download -
Because WebAssembly is more compact than
JavaScript, fetching it is faster. Even though
compaction algorithms can significantly reduce the
size of a JavaScript bundle, the compressed binary
representation of WebAssembly is still smaller.

m https://www.beautiful.ai/presente

To run an application on a device, it

#2 portability has to be compatible with the

device’s processor architecture and
operating system. That means

SOURCE CODE com {Ji“ﬂg source code for every

combination of operating system and
CPU architecture that you want to

support. With WebAssembly there is

BEROWSER

only one compilation step and your
app will run in every modern browser
(including mobile devices)

(incredible wealth of C++ libraries
and open source applications that

exist out there)
11:48:20 AM 00:00:00

[#2 Portability
Dema il

B https://www.beautiful.ai/presen

#3 Flexibility

11:48:24 AM

L=

00:00:00

Web developers will be able to choose
other languages and more developers
will be able to write code for the web.
JavaScript will still be the best choice
for most use cases but now there will
be an option to drop down to a
specialized language once in a while
when you really need a boost. Parts
like Ul and app logic could be in
JavaScript, with the core functionality
iIn WebAssembly. When optimizing
performance in existing JS apps,
pottlenecks could be rewritten in a

anguage that is better suited for the
problem.

@ https://www.beautiful.ai/presenter

No notes

Section 5

DEMOS

11:48:30 AM { 34/50 D> 00:00:01

12 Fartabilny 13 Flexikility

Deswa K2 - CPU Inkensive Dermiz 43 - Viden Editer

@ https://www.beautiful.ai/presenter

No notes

Demo #1

CODE TIME

11:48:35 AM < 3550 > 00:00:00

13 Flewility

Derric #2 - CPU Inbensive Derwaz 03 - Videa Edibor D 1 - Unregd Esgine

DEMODE

A https://www.beautiful.ai/presenter

http://aws-website-
Demo #2 - CPU Intensive webassemblyskeletalanimat

ffaza.s3-website-us-east-
1l.amazonaws.com/
skeletal animation system,

animates multiple

instances of a character
across the screen almost
iIdentical implemenation in
C++and JS WebGL is used

to power the 3D graphics

11:48:41 AM 00:00:00

https://d2jta702z
Not a silver
bullet different

behaviors
between
chrome &

mozilla

11:48:47 AM < 3750 > 00:00:00

m https://www.beautiful.ai/presente

Demo #4 - Unreal Engine

11:48:56 AM

ODE TIME

https://s3.ama
games/ZenGar

Unreal and
unity are 3d
game engines

00:00:01

A https://www.beautiful.ai/presenter

Demo #5 - Unity https://files.u

N
—.-{‘

11:49:01 AM 00:00:01

m https://www.beautiful.ai/presente

Unity Showcase - improvement from asm.js

11:49:06 AM

Unity also

moved to wasm
(august 2018)
from asm.js -

benchmarks

dSIT VS WasSim

00:00:01

A https://www.beautiful.ai/presenter

https://squoosh.a
from

Wedensday
showcase for

Demo #4 - Squoosh

compression

[] Resize

[] Reduce palette

mechanism
https://github.cor.

11:49:13 AM 00:00:02

- D@.
EEEE]

m https://www.beautiful.ai/presente

No notes

November Holiday Hogan @AlanHogan - Aug 22

Replying to @WasmWeekly @rauschma

| just booted windows... on my phone... in a web browser... embedded in a
frigging twitter client

L 1 Ll 8 QO 19 o~

1 more reply

11:49:17 AM 00:00:00

Unity Showcase - imprayveament irom asm. |5

N A

E[a[E]E]

11:49:22 AM

Future

00:00:00

pink world
currrently it's
an MVP let's
talk about
post-mvp

m https://www.beautiful.ai/presente

We already see some
HEAVY-WEIGHT examples - Lightroom,
MAKING USE OF MODERN HARDWARE APPLICATIONS
AutoCAD software
Multithreading support
SIMD - single
instruction multiple

data - parallel vector

work 64 bit support
caching - store

11:49:27 AM 4450 00:00:00 CO m p | Ie d COd e

. SMALL MEGULES - : : : =
175 (oL [y (= (&)
g 1'; FF, : e LF Z e
||

m https://www.beautiful.ai/presente

SMALL MODULES
INTEROP

11:49:33 AM

-Dm. '

[EEEE]

00:00:01

EEEE

Easily use small
models and switch
between js packages
to wasm pacakges
WEB API es module
Integration - using
import and export
toolchain - npm for
webassembly

m https://www.beautiful.ai/presente

WASM ff example
HIGH LEVEL LANGUAGE FEATURES Fra meworks - for

example virtual dom

diff for example
compile to js - change
the target to wasm
instead of JS GC - cross-

ANCUACER" "8 FRAMEWDIRKS platform cycles, and

performance tail call -
11:49:37 AM 46/50 00:00:00 p e I’fO I'm a n Ce

00K
ETS]

A https://www.beautiful.ai/presenter

No notes

11:49:41 AM 00:00:00

=

- DR - == T HANKS
@ @ nSstane; e)
o [e]a) |

A https://www.beautiful.ai/presenter

No notes

l

THATIIS AN EHBE'}_ ENT QUESTION

11:49:45 AM 18/50 00:00:00

: g g Et EI' | Questions? .h 1I"'Ir'-r."'l,ﬂ,H Ks.
EEE]E] | .4

A https://www.beautiful.ai/presenter

No notes

References

Lin Clark Series on WASM

ttps:/fhacks.mozilla.org/2017/02/a-cartoon-intro-to-webassembly

tps://hacks.mozilla.org/2018/10/webassemblys

WebAssembly: How and why

DloE. logrocket.com/webasser 100y-how-and-wi

WASM Skelatal Animation

| o aws-website-webassemblyskeletalanmimation-ftaza.s3-w

WebAssembly Video Editor

ZitaTo2zejapt.cloudiront.net
Epic Zen Garden
https://s3.amazonaws.com/mozilla-games/ZenGarder

squoosh.app

osh.app

11:49:54 AM 49/50 00:00:01

Relerences

=

: plaja | m P ANk
@ Questions? = O B 4
(50 20 (2 G2 | @—

m https://www.beautiful.ai/presente

No notes

"T.HANKS

\

11:50:12 AM 00:00:00

= [2RI [B .
‘ [] 2= L

