
PESPA On The Edge

Rokas Muningis
23 January 26, Vilnius

Me

I’ve been working as Frontend Engineer for the past 6 years, of which past half
year I’ve been working in InsurTech field with Sapiens where I tech-lead small
team of 3 engineers.

And just like everyone else, I’ve received messages from recruiters on LinkedIn for
something else, however, it’s not always that bad.

Edge

Child of CDN and Load Balanceror as per CloudFlare’s explanation [1]:

Edge computing is a networking philosophy focused on bringing computing as
close to the source of data as possible in order to reduce latency and bandwidth
use.

PESPA

Progressively

Enhanced

Single

Page

Application

Progressively Enhanced Single Page Apps

Page Applications

MPA - Multi Page Apps

PEMPA - Progressively Enhanced Multi Page Apps

SPA - Single Page Apps

Honorable Mention - Progressive Web Apps

Brief differences

MPA - No javascript, client handled only link clicks and form submissions

PEMPA - Optional javascript to enhance experience, but most things still
handled by server

SPA - Javascript required, as routing, data-loading, rendering, you name it are
handled by client.

Brief differences

MPA - No javascript, client handled only link clicks and form submissions

PEMPA - Optional javascript to enhance experience, but most things still
handled by server

SPA - Javascript required, as routing, data-loading, rendering, you name it are
handled by client.

Server Side Rendering

- Next.JS
- Nuxt
- Angular Universe
- Gatsby
- Remix
- SvelteKit

Progressive Enhancement

Progressive Enhancement

Progressive Enhancement

Progressively Enhanced Apps

1. Works fine without Javascript on client
2. Works fine without CSS on client

Brief differences

MPA - No javascript, client handled only link clicks and form submissions

PEMPA - Optional javascript to enhance experience, but most things still
handled by server

SPA - Javascript required, as routing, data-loading, rendering, you name it are
handled by client.

PESPA - Optional javascript, and most things handled both on client and server
while running same code.

Not the technology, but rather way to develop websites

Progressively Enhanced Apps

1. Use what is provided by spec. (e.g. <details />)
2. Need to submit the data? Use <form />
3. Need to cache the data? Use Cache headers

Sacrifices and Compromises

In engineering, we’re quite often in position, where have sacrifice something for
something else.

One, which has been an issue for years, and to some extent is still an issue to this
day - SPA and SEO.

At some point we started using SPAs even for SEO-dependant public-facing
websites, yet crawlers were unable to crawl, index and rank them - thus hurting
SEO rankings. Server Side Rendering was middle point between SPAs and
PESPAs.

Brief Summary of Web Development History

Born in 1990 November, first webpages had no javascript, and only <a> tags for
navigation, and <form> for submissions. These, now are known as Multi Page
Applications.

In 1995 December 4th, engineering world saw worst disaster of all or greatest gift
one could imagine (it’s still huge ongoing debate) known as JavaScript. Back then,
it would give you some trails around cursor, hover effects or snow. Quite shortly, in
1999 XMLHttpRequest saw shine of light, which allowed loading or submit data
without reloading the page. Though, back then it was used quite conservatively
and remained known as Progressively Enchanted Multi Page Applications.

Brief Summary of Web Development History

At some point around 20xx, we ditched server side rendered HTML, and did most
of things like rendering, data fetching, persistence on Client - loading page once,
was enough to access whole application. And what a blessing it was, or so we
thought. Removing any kind of server-side rendering, for few years, completely
damaged SEOs but unrelated to that fact, these websites there known as Single
Page Applications

Brief Summary of Web Development History

Eventually, we started rendering our javascript’s templates in backend. Some saw
it as progress, others who could not use internet while talking on phone with a wire
saw it as a glimpse to the past, yet it was not perfect and coincidentally it had quite
an unpleasant acronym - USSR (Universal Server Side Rendering).

However, as time past by, some smart people realised, that we might not need
Javascript on client side at all, and hence, just like it’s ancestor PEMPA,
Progressively Enchanted Single Page Application was born.

Fun fact time!

Even though XMLHttpRequest was initially released in 1999, it was not until 2016
until it was standardized!

Popular implementations

- Remix
- Next.JS
- SvelteKit

Comparison

SvelteKit Remix Next.JS

Type Compiler* Compiler* Framework

Based on Svelte react-router** react

Routing File-based, Nested File-based, Nested File-based, Nested
(beta)

Pre-rendering Yes No*** Yes

Supported run-times

SvelteKit Remix Next.JS

node.js yes yes yes

deno yes yes yes

Cloudflare Pages yes yes yes

Cloudflare Workers yes yes yes

Netlify yes yes yes

Vercel yes yes yes

AWS Lambda yes yes yes

yes

(DEMO) PESPA on the Edge

Q&A

Links

[1] What is a CDN edge server? | Cloudflare

[2] The Web’s Next Transition | Epic Web Dev by Kent C. Dodds

[3] Progressive Enhancement

https://www.google.com/url?q=https://www.cloudflare.com/learning/cdn/glossary/edge-server/&sa=D&source=editors&ust=1681981456685398&usg=AOvVaw0Qu8HLg2Hx0z8I_YG0IjKL
https://www.google.com/url?q=https://www.epicweb.dev/the-webs-next-transition%23pespa-architectural-behaviors&sa=D&source=editors&ust=1681981456685767&usg=AOvVaw3DP2u_da4lPeLINddHpZ6w
https://www.google.com/url?q=https://www.hesketh.com/publications/progressive_enhancement_and_the_future_of_web_design.html&sa=D&source=editors&ust=1681981456686064&usg=AOvVaw1xQ1jh9bZu12AF6byw2uRW

